Boundary-value Problems with Non-local Initial Condition for Parabolic Equations with Parameter
نویسندگان
چکیده
In 2002, J.M.Rassias (Uniqueness of quasi-regular solutions for bi-parabolic elliptic bi-hyperbolic Tricomi problem, Complex Variables, 47 (8) (2002), 707-718) imposed and investigated the biparabolic elliptic bi-hyperbolic mixed type partial differential equation of second order. In the present paper some boundary-value problems with non-local initial condition for model and degenerate parabolic equations with parameter were considered. Also uniqueness theorems are proved and non-trivial solutions of certain non-local problems for forward-backward parabolic equation with parameter are investigated at specific values of this parameter by employing the classical ”a-b-c” method. Classical references in this field of mixed type partial differential equations are given by: J.M.Rassias (Lecture Notes on Mixed Type Partial Differential Equations, World Scientific, 1990, pp.1-144) and M.M.Smirnov (Equations of Mixed Type, Translations of Mathematical Monographies, 51, American Mathematical Society, Providence, R.I., 1978 pp.1-232). Other investigations are achieved by G.C.Wen et al. (in period 1990-2007). MSC 2000 classification:
منابع مشابه
A MIXED PARABOLIC WITH A NON-LOCAL AND GLOBAL LINEAR CONDITIONS
Krein [1] mentioned that for each PD equation we have two extreme operators, one is the minimal in which solution and its derivatives on the boundary are zero, the other one is the maximal operator in which there is no prescribed boundary conditions. They claim it is not possible to have a related boundary value problem for an arbitrarily chosen operator in between. They have only considered lo...
متن کاملNvestigation of a Boundary Layer Problem for Perturbed Cauchy-Riemann Equation with Non-local Boundary Condition
Boundary layer problems (Singular perturbation problems) more have been applied for ordinary differential equations. While this theory for partial differential equations have many applications in several fields of physics and engineering. Because of complexity of limit and boundary behavior of the solutions of partial differential equations these problems considered less than ordinary case. In ...
متن کاملThe Study of Some Boundary Value Problems Including Fractional Partial Differential Equations with non-Local Boundary Conditions
In this paper, we consider some boundary value problems (BVP) for fractional order partial differential equations (FPDE) with non-local boundary conditions. The solutions of these problems are presented as series solutions analytically via modified Mittag-Leffler functions. These functions have been modified by authors such that their derivatives are invariant with respect to fractional deriv...
متن کاملTime-periodic Solutions of Quasilinear Parabolic Differential Equations Ii. Oblique Derivative Boundary Conditions
We study boundary value problems for quasilinear parabolic equations when the initial condition is replaced by periodicity in the time variable. Our approach is to relate the theory of such problems to the classical theory for initial-boundary value problems. In the process, we generalize many previously known results.
متن کاملNon homogeneous boundary value problems for linear dispersive equations
While the non-homogeneous boundary value problem for elliptic, hyperbolic and parabolic equations is relatively well understood, there are still few results for general dispersive equations. We define here a convenient class of equations comprising the Schrödinger equation, the Airy equation and linear ‘Boussinesq type’ systems, which is in some sense a generalization of strictly hyperbolic equ...
متن کامل